特征提取算法將圖像描述為指向圖像中的關(guān)鍵元素的一組特征向量。本文將回顧一系列的特征檢測(cè)算法,在這個(gè)過(guò)程中,看看一般目標(biāo)識(shí)別和具體特征識(shí)別在這些年經(jīng)歷了怎樣的發(fā)展。Scale Invariant Feature Transform (SIFT)以及 Good Features To Track (GFTT) 是特征提取技術(shù)的早期實(shí)現(xiàn)。但這些屬于計(jì)算密集型算法,涉及到大量的浮點(diǎn)運(yùn)算,所以它們不適合實(shí)時(shí)嵌入式平臺(tái)。
因此,SIFT 在目前并不常用,它主要是用作一個(gè)參考基準(zhǔn)來(lái)衡量新算法的質(zhì)量。因?yàn)樾枰档陀?jì)算復(fù)雜度,所以最終導(dǎo)致要開(kāi)發(fā)一套更容易實(shí)現(xiàn)的新型特征提取算法。Speeded Up Robust Features (SURF) 是最早考慮實(shí)現(xiàn)效率的特征檢測(cè)器之一。它使用不同矩形尺寸中的一系列加法和減法取代了 SIFT 中浩繁的運(yùn)算。而且,這些運(yùn)算容易矢量化,需要的內(nèi)存較少。
接下來(lái),Histograms of Oriented Gradients (HOG) 這種在汽車行業(yè)中常用的熱門行人檢測(cè)算法可以變動(dòng),采用不同的尺度來(lái)檢測(cè)不同大小的對(duì)象,并使用塊之間的重疊量來(lái)提高檢測(cè)質(zhì)量,而不增加計(jì)算量。它可以利用并行存儲(chǔ)器訪問(wèn),而不像傳統(tǒng)存儲(chǔ)系統(tǒng)那樣每次只處理一個(gè)查找表,因此根據(jù)內(nèi)存的并行程度加快了查找速度。
然后,Oriented FAST and Rotated BRIEF (ORB) 這種用來(lái)替代 SIFT 的高效算法將使用二進(jìn)制描述符來(lái)提取特征。ORB 將方向的增加與 FAST 角點(diǎn)檢測(cè)器相結(jié)合,并旋轉(zhuǎn)BRIEF描述符,使其與角方向?qū)R。二進(jìn)制描述符與FAST和Harris Corner 等輕量級(jí)函數(shù)相結(jié)合產(chǎn)生了一個(gè)計(jì)算效率非常高而且相當(dāng)準(zhǔn)確的描述圖。