電子產(chǎn)業(yè)一站式賦能平臺(tái)

PCB聯(lián)盟網(wǎng)

搜索
查看: 1659|回復(fù): 0
收起左側(cè)

深圳嵌入式培訓(xùn)機(jī)構(gòu)哪個(gè)好點(diǎn)_整合模擬元件和ARM微控制器內(nèi)核,解決棘手嵌入式系統(tǒng)問題

[復(fù)制鏈接]

2607

主題

2607

帖子

7472

積分

高級(jí)會(huì)員

Rank: 5Rank: 5

積分
7472
跳轉(zhuǎn)到指定樓層
樓主
發(fā)表于 2020-7-24 12:17:47 | 只看該作者 回帖獎(jiǎng)勵(lì) |倒序?yàn)g覽 |閱讀模式
深圳嵌入式培訓(xùn)機(jī)構(gòu)哪個(gè)好點(diǎn)_整合模擬元件和ARM微控制器內(nèi)核,解決棘手嵌入式系統(tǒng)問題,   

鑒于在性能、成本、功耗、尺寸、新功能和效率等方面宏大的提升目標(biāo),未來嵌入式系統(tǒng)的設(shè)計(jì)面臨著復(fù)雜的挑戰(zhàn)。不過,一種有望解決這些復(fù)雜問題的設(shè)計(jì)選項(xiàng)已開始嶄露頭角——即模擬元件與ARM?微控制器內(nèi)核的智能集成。這種方案與傳統(tǒng)模擬集成的區(qū)別在于,新方案具有超高的性能,還經(jīng)過了多種優(yōu)化,以解決具體的系統(tǒng)級(jí)問題。雖然每個(gè)市場(chǎng)對(duì)這些提升領(lǐng)域的優(yōu)選次序都有著自己的認(rèn)識(shí),但同時(shí)滿足多個(gè)因素的要求實(shí)為眾望所歸,可以通過集成多個(gè)分立式元件來實(shí)現(xiàn)。從邏輯上講,組合多個(gè)器件可以實(shí)現(xiàn)這些嵌入式系統(tǒng)目標(biāo)中的一大部分,但只是簡(jiǎn)單地把多個(gè)分立式元件與一枚處理器集成到一個(gè)封裝之中,這并非答案所在;解決方案要復(fù)雜得多,需要智能集成。

模擬與數(shù)字的智能集成

高性能模擬元件(放大器、ADC、DAC、基準(zhǔn)電壓源、溫度傳感器、無線收發(fā)器等)與ARM 32位處理器內(nèi)核的智能集成,再加上正確的數(shù)字外設(shè),這種方式可以實(shí)現(xiàn)分立式解決方案無法望塵莫及的目標(biāo)。為了構(gòu)造出最佳混合信號(hào)控制處理器,不但需要對(duì)整個(gè)系統(tǒng)有著深入的了解,需要知曉是否有正確的知識(shí)產(chǎn)權(quán)(IP)可用,同時(shí)還具備有關(guān)該知識(shí)產(chǎn)權(quán)的專業(yè)知識(shí)。毫無疑問,負(fù)責(zé)為這些集成器件制定功能要求的芯片設(shè)計(jì)師和系統(tǒng)工程師必須對(duì)最終應(yīng)用需求有著充分的了解。這種領(lǐng)域知識(shí)至關(guān)重要,包括對(duì)電路板級(jí)要求的深入了解,包括尺寸、溫度范圍、制造考慮因素、功耗、成本和信號(hào)鏈中的配套元件。圖1所示為智能集成器件中經(jīng)常用到的模擬和數(shù)據(jù)IP模塊。

  圖 1.智能集成: 針對(duì)目標(biāo)應(yīng)用而優(yōu)化的模數(shù)組合式IP

有正確的知識(shí)產(chǎn)權(quán)可用,這是實(shí)現(xiàn)系統(tǒng)級(jí)目標(biāo)的有力起點(diǎn)。這個(gè)起點(diǎn)是縮短混合信號(hào)控制處理器開發(fā)周期的必要條件。越來越多地,適用于具體應(yīng)用的知識(shí)產(chǎn)權(quán)本身的獲取/形成和實(shí)施需要由半導(dǎo)體制造商來協(xié)調(diào)。在此基礎(chǔ)上,還需要對(duì)這些知識(shí)產(chǎn)權(quán)進(jìn)行調(diào)整以滿足兩點(diǎn)具體要求。第一點(diǎn)是基于主要目標(biāo)應(yīng)用的需求優(yōu)化性能和運(yùn)行,由此實(shí)現(xiàn)系統(tǒng)級(jí)效益的最大化。第二點(diǎn)是優(yōu)化知識(shí)產(chǎn)權(quán),使其與混合信號(hào)控制處理器中的其他補(bǔ)充性知識(shí)產(chǎn)權(quán)模塊良好、方便兼容。

最后,在業(yè)務(wù)層需要有協(xié)調(diào)機(jī)會(huì),將系統(tǒng)制造商與半導(dǎo)體制造商的專長(zhǎng)和知識(shí)有機(jī)地結(jié)合起來,從而實(shí)現(xiàn)獨(dú)特的優(yōu)化設(shè)計(jì)。

混合信號(hào)控制處理器應(yīng)用

有許多應(yīng)用都可以從集成了高性能模擬和ARM微控制器內(nèi)核的器件受益,包括溫度檢測(cè)、壓力檢測(cè)、氣體檢測(cè)、太陽(yáng)能逆變器、電機(jī)控制、醫(yī)療生命體征監(jiān)護(hù)、汽車監(jiān)控系統(tǒng)以及水表/電表/氣表。本文將考察兩個(gè)具體的應(yīng)用領(lǐng)域,其中,優(yōu)化高性能模擬與ARM微控制器內(nèi)核的集成可在成本、功耗、尺寸和性能四個(gè)方面帶來極大的優(yōu)勢(shì):

1. 太陽(yáng)能光伏(PV)系統(tǒng)專用逆變器,其目標(biāo)是提高效率,降低物料(BOM)成本,集成智能以支持與智能電網(wǎng)的連接。

2. 電機(jī)控制,其目標(biāo)是提高效率以促進(jìn)環(huán)保事業(yè),以及降低成本。

請(qǐng)注意,盡管這些智能集成混合信號(hào)器件是針對(duì)具體的最終應(yīng)用而優(yōu)化的,但它們也可以很好地用于功能要求類似于主要目標(biāo)應(yīng)用的關(guān)聯(lián)應(yīng)用。

太陽(yáng)能光伏逆變器:降低成本以擴(kuò)大應(yīng)用范圍,集成智能以支持智能電網(wǎng)在過去5年中,盡管太陽(yáng)能光伏發(fā)電系統(tǒng)的年增長(zhǎng)率超過50%,但其在全球電力總裝機(jī)量中所占比重仍然很小。盡管在某些地區(qū),太陽(yáng)能光伏發(fā)電已實(shí)現(xiàn)與化石燃料發(fā)電的平價(jià),但在多數(shù)地區(qū),這一目標(biāo)尚未實(shí)現(xiàn),而這種平價(jià)又多取決于政府補(bǔ)貼。

為了提高與傳統(tǒng)能源(如天然氣、煤、石油)的競(jìng)爭(zhēng)優(yōu)勢(shì),太陽(yáng)能光伏發(fā)電降低成本的最佳方式是既提高效率,又降低系統(tǒng)BOM成本。一方面,太陽(yáng)能面板的成本和效率朝著正確的方向發(fā)展,另一方面,新技術(shù)也為太陽(yáng)能光伏逆變器的進(jìn)步提供了保障——這是太陽(yáng)能面板發(fā)電與電網(wǎng)之間的接口。這些新技術(shù)包括NPC 3級(jí)/5級(jí)/多級(jí)、高頻開關(guān)拓?fù)浣Y(jié)構(gòu),采用基于碳化硅(SiC)和亞硝酸鎵(GaN)材料的快速功率晶體管。

圖2所示為一種二級(jí)太陽(yáng)能光伏逆變器系統(tǒng)。來自面板的電能,本質(zhì)上為直流源,被轉(zhuǎn)換成交流電,以饋入電網(wǎng)。第一級(jí)為DC-DC轉(zhuǎn)換,將電平升高,以使其兼容電網(wǎng)峰值電壓。第二級(jí)為DC-AC轉(zhuǎn)換。紅線所標(biāo)區(qū)域所示為低電壓控制元件,當(dāng)與單混合信號(hào)控制處理器相結(jié)合時(shí),可產(chǎn)生系統(tǒng)級(jí)效益。通過將多個(gè)元件集成到單個(gè)器件之中,通過提高新高速開關(guān)拓?fù)浣Y(jié)構(gòu)的效率,由此實(shí)現(xiàn)節(jié)省成本的目標(biāo)。結(jié)果降低了單位kW的裝機(jī)成本。由于可以使用較小電感,因此還可以通過新型拓?fù)浣Y(jié)構(gòu)來節(jié)省成本。這既有利于節(jié)省BOM成本,同時(shí)還可減小逆變器的尺寸。

  圖2. 二級(jí)太陽(yáng)能光伏逆變器系統(tǒng)功能框圖;紅色區(qū)域所示為智能集成模塊

高速逐次逼近型寄存器(SAR) ADC非常適合這種應(yīng)用,因?yàn),此類ADC擁有適當(dāng)?shù)木龋?3 ENOB),其超快的轉(zhuǎn)換速率可支持較高頻率的控制環(huán)路,能對(duì)多個(gè)輸入通道進(jìn)行多路復(fù)用,還具有低延遲(

為了支持多級(jí)轉(zhuǎn)換和高速控制環(huán)路,需要選擇架構(gòu)性能適當(dāng)且具備高速運(yùn)行能力的處理器內(nèi)核。在本例中,設(shè)計(jì)溫度范圍運(yùn)行速率大于200 MHz的ARM Cortex?-M4即可滿足該需求。

正弦濾波器(如圖2所示)與隔離式ADC結(jié)合使用。這樣可對(duì)電網(wǎng)中的電流以及直流注入進(jìn)行測(cè)量,以防止變壓器飽和。傳統(tǒng)方法是用一個(gè)霍爾效應(yīng)電流傳感器,但與隔離式ADC相比,這種方法成本較高。該方法假定,正弦濾波器集成于混合信號(hào)控制處理器之中,從而消除了物料清單中表現(xiàn)為可編程邏輯的額外芯片的必要性。另外,相對(duì)于霍爾效應(yīng)傳感器,ADC正弦濾波器組合的隔離還具有線性度更佳的額外優(yōu)勢(shì),有利于減少諧波失真。

隨著電網(wǎng)智能化步伐的加快,太陽(yáng)能光伏逆變器將需要具備更多智能,以幫助解決電網(wǎng)不平衡問題。這是指來自多個(gè)源的電力超過需求的情況。為此,業(yè)界十分重視光伏系統(tǒng)智能,以電網(wǎng)整合為目標(biāo),電網(wǎng)的每個(gè)供電商必須相互合作以實(shí)現(xiàn)電網(wǎng)的穩(wěn)定。電網(wǎng)整合要求更好地對(duì)饋入電網(wǎng)的電能進(jìn)行測(cè)量、控制和質(zhì)量分析。一種專門為電網(wǎng)電力質(zhì)量監(jiān)控而設(shè)計(jì)的諧波分析引擎有助于滿足該需求。通過計(jì)算幾個(gè)變量(包括諧波失真、功率、rms電壓、rms電流、VAR、VA和功率系數(shù),可以實(shí)現(xiàn)對(duì)電力質(zhì)量的監(jiān)控。用于執(zhí)行這些計(jì)算的專用引擎不但可以帶來超高的精度,同時(shí)還能減輕ARM Cortex-M4內(nèi)核的負(fù)擔(dān),使其無需執(zhí)行該任務(wù)。

利用在設(shè)計(jì)時(shí)充分考慮了這種最終應(yīng)用的混合信號(hào)控制處理器,太陽(yáng)能逆變器可以在系統(tǒng)層面獲得極大的優(yōu)勢(shì)。基于對(duì)市場(chǎng)趨勢(shì)的了解以及堅(jiān)實(shí)的系統(tǒng)知識(shí),可以打造出智能化集成芯片,這種芯片不但能支持新一代拓?fù)浣Y(jié)構(gòu),減少芯片數(shù)量,同時(shí)還能帶來更多功能以支持與智能電網(wǎng)的接口。

電機(jī)控制:提升效率,增進(jìn)環(huán)保事業(yè),發(fā)揚(yáng)全壽命成本節(jié)省精神

在關(guān)于發(fā)電方式的環(huán)保擔(dān)憂之外,人們還十分關(guān)心能源的使用效率問題。鑒于電機(jī)占全球用電量的40%,所以問題是如何提高這些系統(tǒng)的環(huán)保性。 答案在于提高其效率,由此減少能耗。通過普及高效電機(jī)而節(jié)省的能源量十分可觀:每年可節(jié)省數(shù)千億千瓦時(shí)的用電量,可減少大氣中二氧化碳排放量數(shù)百萬噸。顯然,高效電機(jī)的影響具有十分重要的意義。具體地,有多個(gè)關(guān)鍵因素推動(dòng)著高效電機(jī)的應(yīng)用。其中一個(gè)是環(huán)保問題推動(dòng)的政府立法。歐盟已經(jīng)實(shí)施相應(yīng)的法規(guī),將來還會(huì)實(shí)施更多法規(guī),強(qiáng)制要求使用更高效的電機(jī)系統(tǒng)。另一個(gè)關(guān)鍵推動(dòng)因素是全壽命成本優(yōu)勢(shì)。在電機(jī)控制系統(tǒng)的成本中,材料約占15%,運(yùn)行所用能源成本占85%?梢,通過提高效率,降低電機(jī)系統(tǒng)全壽命成本的潛力是非常巨大的。

提高效率的方式包括特別的電機(jī)設(shè)計(jì),電機(jī)類型的選擇,為不具備這種控制的系統(tǒng)添加可調(diào)速驅(qū)動(dòng)器(ASD),以及針對(duì)效率而優(yōu)化的控制算法。就特別的電機(jī)設(shè)計(jì)和特定電機(jī)類型的選擇而言,永磁電機(jī)一直是關(guān)注重點(diǎn),其使用呈增長(zhǎng)之勢(shì)。永磁電機(jī)的效率最高可達(dá)96%,超過了歐洲超高效能效標(biāo)準(zhǔn)(IE3)。

智能集成式混合信號(hào)控制處理器有可能實(shí)現(xiàn)ASD和控制算法的改進(jìn)。以成本優(yōu)勢(shì)明顯的方式集成基于ARM的CPU子系統(tǒng)、PWM、ADC和多路復(fù)用功能,結(jié)果可以在系統(tǒng)層省去ASD的物料成本。

利用轉(zhuǎn)換時(shí)間較快的高精度ADC,可以改進(jìn)控制算法。結(jié)果可增進(jìn)電機(jī)系統(tǒng)的總體效率。精度高于12位的ADC可提高精度,用其來控制相位電流。 然而,不能用采樣轉(zhuǎn)換延遲控制來?yè)Q取更高的精度。這樣就不能選擇通過均值或過采樣方式提升SNR的ADC。需要以終端機(jī)器(比如,貼片機(jī))的運(yùn)動(dòng)速率來測(cè)量變量?焖俎D(zhuǎn)換時(shí)間,加上快速ARM微控制器內(nèi)核,可以加快控制環(huán)路的運(yùn)行速率,改進(jìn)響應(yīng)時(shí)間,縮短建立時(shí)間。反過來,這又能提高生產(chǎn)線系統(tǒng)的吞吐量和效率,從而降低生產(chǎn)成本。就如太陽(yáng)能光伏應(yīng)用一樣,SAR ADC是電機(jī)控制的良好選擇。在電機(jī)控制的例子中,可以設(shè)計(jì)出高性能SAR ADC,無需均值或過采樣也可達(dá)到要求。

圖3中的各種知識(shí)產(chǎn)權(quán)模塊都經(jīng)過精心設(shè)計(jì),相互配合良好。需要的結(jié)果是一種高度敏捷的儀器儀表子系統(tǒng),可以采集多個(gè)計(jì)劃精確的采樣,并高效地將其交付給ARM的主存儲(chǔ)器。對(duì)于電機(jī)控制,相位繞組電流和其他測(cè)量值均可在PWM周期中的精確指定點(diǎn)進(jìn)行同步采樣。在此基礎(chǔ)上,采樣數(shù)據(jù)可以在不產(chǎn)生開銷的情況下高效地移至微控制器的存儲(chǔ)器以進(jìn)行處理。為了實(shí)現(xiàn)這一目標(biāo),混合信號(hào)控制處理器中有5個(gè)不同的模塊需要協(xié)同工作。

  圖3. 電機(jī)控制系統(tǒng)功能框圖

周期開始時(shí),發(fā)送一個(gè)PWM脈沖到觸發(fā)路由單元(TRU),后者負(fù)責(zé)將觸發(fā)主機(jī)連接至觸發(fā)從機(jī)。在本例中,PWM為觸發(fā)主機(jī),ADC控制器(ADCC)定時(shí)器為觸發(fā)從機(jī)。

ADCC需要具備管理大量事件的能力,并使用定時(shí)器(TMR0/TMR1)來跟蹤從PWM觸發(fā)到啟動(dòng)特定ADC事件所需時(shí)間。在定時(shí)器與特定事件相匹配的情況下,選擇的是ADC輸入多路復(fù)用(M0和M1)和通道(ADC0和ADC1)。接下來,將轉(zhuǎn)換開始信號(hào)發(fā)送至ADC。采樣數(shù)據(jù)從ADC移至ADCC,然后從ADCC通過DMA移至微控制器SRAM。下面的圖4所示為PWM脈沖、PWM同步和ADCC所控制ADC事件之間的相對(duì)時(shí)序。

  圖4. 用ADC對(duì)5個(gè)不同電機(jī)控制變量進(jìn)行采樣的時(shí)序

對(duì)于面向電機(jī)控制的混合信號(hào)控制處理器設(shè)計(jì),其在PWM、TRU、多路復(fù)用、緩沖、SAR ADC和DMA方面有著良好的知識(shí)產(chǎn)權(quán)基礎(chǔ)。然而,為了在PWM周期中實(shí)現(xiàn)ADC采樣的精密時(shí)序,必須對(duì)這些模塊的設(shè)計(jì)進(jìn)行特別的改動(dòng)。ADCC模塊的必要性是有事實(shí)依據(jù)的,即其他知識(shí)產(chǎn)權(quán)模塊集成于單枚芯片中,它們之間需要協(xié)調(diào)。ADCC即專門針對(duì)這一要求而設(shè)計(jì),充分發(fā)揮了兩個(gè)ADC引擎的高速優(yōu)勢(shì),這些ADC引擎的轉(zhuǎn)換時(shí)間快達(dá)380 ns。

結(jié)論

高級(jí)基礎(chǔ)技術(shù)只是個(gè)開端而已——芯片設(shè)計(jì)師必須對(duì)客戶的系統(tǒng)有著全面的了解,并在精密模擬和數(shù)字元件的設(shè)計(jì)、應(yīng)用及優(yōu)化方面具備深厚的專業(yè)知識(shí)。另外,芯片制造商必須愿意并有能力與系統(tǒng)制造商進(jìn)行直接互動(dòng)和協(xié)作,共同打造新型產(chǎn)品。選用最合適的元件,針對(duì)目標(biāo)終端應(yīng)用進(jìn)行優(yōu)化,對(duì)知識(shí)產(chǎn)權(quán)模塊進(jìn)行改動(dòng),使其默契配合。只有這些條件得到滿足,才能將優(yōu)化的獨(dú)立元件有機(jī)地整合起來。ADI公司即推出了此類智能集成產(chǎn)品的良好典范,其中包括ADuCM360(一款完全集成式3.9 kSPS、24位數(shù)據(jù)采集系統(tǒng))以及ADSP-CM403F和ADSP-CM408F(集成兩個(gè)高精度16位ADC和ARM Cortex-M4處理器內(nèi)核的混合信號(hào)控制處理器)。

作者:Colin Duggan和Denis Labrecque,ADI公司

發(fā)表回復(fù)

本版積分規(guī)則


聯(lián)系客服 關(guān)注微信 下載APP 返回頂部 返回列表